t
a

SF 298 MASTER COPY KEEP THIS COPY FOR REPRODUCTION PURPOSES

Form Approved

REPORT DOCUMENTATION PAGE OMB NO. 0704-0188

Public reporting buraen for this coflection of information s estimated to average 1 hour per response. ncluding the time tor reviewing instructions. searching existing data sources,
gathenng and maintaining the data needed. and completing and reviewing the cotlection of information. Send comment regarding this burden esumates or any other aspect o this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson
Davis Highway, Sutte 1204, Arlington, VA 22202-4302. and to the Offica of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 3. REPORT TYPE AND DATES COVERED
Jan 1/95 - Jan 1/96

2. REPORT DATE
March 1996

4. TITLE AND SUBTITLE

An Architecture for Visualization and User Interaction in
Parallel Environments

5. FUNDING NUMBERS

6. AUTHOR(S) _
DAAHOY -G 3-G~ 0095

E. Mascarenhas and V. Rego

7. PERFORMING ORGANIZATION NAMES(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

REPORT NUMBER
Department of Computer Sciences
Purdue University

West Lafayette IN 47907

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING

AGENCY REPORT NUMBER

U.S. Army Research Office
P.O. Box 12211

Research Triangle Park, NC 27709-2211 ARo 33 703./-MA- R (£

11. SUPPLEMENTARY NOTES

The views, opinions and/or findings contained in this report are those of the author(s) and should not be construed as
an official Department of the Army position, policy or decision, unless so designated by other documentation.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12 b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

An application-independent visualization interaction system is proposed with potential
for application-binding at any stage of the modeling process. Advantages of this
approach include ease of use, flexibility, code reuse, and modularity. Our design ideas
are manifest in the DISplay system, a graphical user interaction and display library
which can be used with any parallel software. We outline its use in the dynamic display
of results from computations in queueing simulations, exemplifying synchronization of
multiple remote display requests, and the potential for enhanced parallel simulations.
We also describe how it may be used to define customized user interaction dialogs for

input from an application, and bi-directional interaction between a user and an
application.

14. SUBJECT TERMS 15. NUMBER IF PAGES

9960222 109

16. PRICE CODE

17. SECURITY CLASSIFICATION
OR REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500

DTI0 QUALYT
7

I7 INGPECTED 1

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18
298-102

An Architecture for Visualization and User Interaction in Parallel
Environments *

Edward Mascarenhas
Vernon Rego

Department of Computer Sciences
Purdue University
West Lafayette, IN 47907

Abstract

An application-independent visualization interaction system is proposed, with potential for application-
binding at any stage of the modeling process. Advantages of this approach include ease of use, flex-
ibility, code reuse, and modularity. Our design ideas are manifest in the DISplay system, a graphical
user interaction and display library which can be used with any parallel software. We outline its use
in the the dynamic display of results from computations in queueing simulations, exemplifying syn-
chronization of multiple remote display requests, and the potential for enhanced parallel simulations.
We also describe how it may be used to define customized user interaction dialogs for input from an
application, and bi-directional interaction between a user and an application.

* Research supported in part by NATO-CRG900108, NSF CCR-9102331, ONR-9310233, and ARO-93G0045.

1 Introduction

The methodology of graphical user interaction is well accepted as a useful and constructive modeling aid
in simulation applications. In application-specific user interactions with a computation, an interface is
typically made part of an application. In contrast to this, we propose the use of an application-independent
visualization interaction system with potential for application-binding at any stage of the modeling process.
Advantages of this approach include ease of use — specialized display knowledge is encapsulated in the
system, flexibility — the system can be used for a variety of applications, including parallel and distributed
simulations, code reuse — graphical interaction code need not be reconstructed for different applications,
and modularity — visualization and interaction portions of the application can be layered on top of the
application, facilitating design changes and code modification. Our ideas are manifest in the DISplay
system, a graphical user interaction and display library, and associated servers which can be used with
any sequential or parallel computation. DISplay was motivated by our studies in Distributed Interactive
Simulation on heterogeneous networks [7]. In this paper we focus primarily on the use of DISPlay in

parallel simulations.

The construction of a user-interface for a given application is a nontrivial task, requiring specialized
skills. A good interface enhances the ease of use of a software product, often improving a user’s
productivity significantly. Further, the success of a software product often depends on the interface it
provides to potential users. In developing a user interface for a given application, a designer chooses one
of two standard approaches. One approach is to bind the coding of the interface with the coding of the
application; the interface becomes an integral part of the application. Though parts of the the interface
may be common to other applications, these parts must be recoded when used elsewhere. To get around
this, the entire functionality of an interface can be embedded in a high-level library which provides an
application developer a tool for rapid interface generation. This is the second approach and is found in
tools like Motif [6] and Tk [12]. This tack has several advantages. Application developers require no
knowledge of the workings of low levels graphics functions. Distinct applications may link to the same
library, using a common interface to make distinct application-specific interfaces. Display and interaction
routines contained in the library may be shared by different applications, also known as code-reuse in the

software engineering community.

In a typical modeling study, an analyst (user) initially interacts with a simulation to provide input,
e.g. by providing parameters or the name of a file containing parameters. As the simulation proceeds, it
may be necessary to interact with the simulation and provide input to change its computational trajectory,
based on its current trajectory. Such interaction with an executing model may take place at specific or
at arbitrary points in the model, depending on the type of interaction required. It is generally useful to
an analyst to have a continually updated status report on the progress of an executing model, either via
textual displays, graphical displays, or an abstract display representing meaningful progress so that a run
may be aborted when a computation goes awry. When a simulation run is done, an analyst usually wants

output in the form of tables or graphs. The complexity of such user-interactions is significantly larger in

the parallel simulation, and more generally, parallel computing domains. Simple sequential displays now
require synchronization between multiple (distributed) processes, so that textual or graphical results are
presented to a user in a consistent manner, obeying causality constraints. Simple user-interface tools for
sequential interactions and displays cannot cater to multiple interactions for distributed applications.

1.1 Visual Interactive Simulation and DISplay

Questions concerning the provision of facilities for user interaction with a running simulation, or for the
graphical display of simulations results in real-time are not new. Indeed, O’Keefe [10] discusses basic
ideas underlying and a methodology for Visual Interactive Simulation (VIS), and Rooks [14] gives a
proposal for VIS, outlining general requirements and potentially unifying framework.

Early software systems supporting VIS were generally restricted to animations of application com-
ponents of simulation models. Later, these systems added user interaction capabilities in various forms.
More recent systems supporting VIS include WITNESS [18] — which also allows interactive model
building, Cinema [5] and Arena [1] — which are used with the SIMAN simulation language, providing
real-time or post-processed animation and building of a model, SIMSCRIPT IL5 [15] — a language
which provides an integrated graphical interface called SIMGRAPHICS, and TESS [13, 11] — a system
associated with the SLAM simulation language, with facilities for graphical model building, analyzing,
graphing and animating model results.

In this paper we describe the DISplay system, which exhibits all of the requirements of VIS to a large
degree. Our terminology follows that provided by Rooks [14]. Facilities for dynamic visualization of
the progress of a simulation in the form of abstract displays like histograms and representative displays
like networks are provided. The result is a system which provides a simple scheme for animating general
simulations. DISplay is implemented in C and C++. The library with which the application program is
linked is entirely C-based. A programmer may code an application in a variety of languages, provided these
can be interfaced with a C library. We have tested the DISplay tool in a number of different environments,
including distributed computing environments such as PVM [17] and Conch [19], the EcliPSe parallel
simulation environment {7], and the process-oriented simulation tool CSIM [16]. Here we describe one
example of its use with CSIM. Use of DISplay for the display of real-time performance measures in
general EcliPSe-based parallel simulations is described in [7]. DISplay has a graphical component that
was constructed using OSF/Motif [6], in conjunction with the PEX [4] library for 3D graphs. To use
DISplay, all that is required is a workstation hosting an X server, with an optional PEX compatibility (for
3D graphs).

The rest of the paper is organized as follows. Section 2 contains a description of the DISplay system
architecture, our design goals and software requirements. In Section 3 we describe design aspects in some
detail, also motivating our design decisions. Programing and user interfaces are addressed in Section 4,
and a demonstrative example of DISplay’s use is given in Section 5. We conclude in Section 6, discussing
the contributions of this work, aspects of its limitations and ideas for future work.

Model Developer

Simualtion Analyst Name
Connection or Programmer

Server

or User

DISplay server
?Iocatlon

Fork
DISplay Server

X protocol

DISplay Protocol

Figure 1: The Client Server Architecture

2 The DISplay Architecture

The DISplay software architecture is based on the client-server paradigm [2]. Here, the simulation
application, which is created by an analyst or programmer, is treated as a client. Client calls are made by
invoking functions resident in the DISplay client library. The server portion of the architecture consists of
a connection server (CS) to which clients connect, and a DISplay server (DS) which handles all graphics
and user interaction requests from a distributed application. Typically, the client connects to the CS during
application initialization; the CS delivers a handle (i.e., socket) to the application for communication with
the DS. The DS is created by the CS using a unix fork operation, and reads incoming messages from the
application, creating the necessary display tasks and interaction dialogs, as specified by the application.
Continuing display and user interaction is based on application specifics and objectives. Messages between
the application and the DS form a well-defined set of primitives, part of the DISplay protocol. The DS
connects to an X workstation to execute specified display and user interaction commands. The analyst
can interact with an executing application from the workstation where the display is done, thus enabling
a requisite interaction capability between analyst and model. A picture depicting the overall architecture

can be seen in Figure 1.

The CS performs an important function in the mechanism described above. It must be located on
a well known machine and port, so that applications can readily connect to it. The connection is made
using a unique Name, which identifies the application. The CS maintains a list containing each active DS,
along with its associated Name. In a multiprocessor application, say using PVM, Conch, or some other
system, several processes, possibly residing on distinct (distributed) processors, may request a single,
cooperative graphical display and user interaction. In this case, the CS delivers the same DS handle to
each of these processes (from the same application), so that they may all connect to the same DS. All
executing processes may be on distinct and remote machines, including both the CS and the DS, which
need not be located on the workstation where the display and user interaction is being done.

Once a DS has been created, an application interacts only with its DS, leaving the CS to continue to

read connection requests from other applications. If the name specified in an incoming connection request
is different from any of the current names in the CS database, it delivers the application a connection to
a new DS. Otherwise, it delivers the application an existing connection. Such a scheme is the primary
means for sharing a server among several cooperating processes, and is common in parallel computing

environments.

2.1 Use of DISplay in Parallel Simulation Environments

There are several approaches to developing parallel discrete event simulations. Of these, the primary
approaches are conservative, optimistic and adaptive. In the conservative approach events are processed
strictly in order of occurrence, maintaining causality at all times. The approach is prone to deadlock, which
may be avoided by resorting to the use of so-called null messages. In the optimistic approach, events are
processed as they become available; potential causality conflicts are disregarded until a causality error
is detected. Upon detection of such an error, invalidated simulation work is undone, the causality error
corrected and the simulation re-executed from the point of correction. The approach requires some form
of state-saving, so that simulation re-execution from a given point is possible. The adaptive approach is a
mixture of the optimistic and the conservative approaches. A summary of these approaches can be found
in [3].

Without loss of generality, we assume that the simulation environment is made up of a cluster of
workstations which work collectively to solve a problem. Each workstation may host a variable number
of processes. The DS can be used in one of two ways in such a situation. One approach is to connect
every simulation process to the DS. Doing this, however, may not be possible because the DS may run
out of file descriptors if the number of processes is very large, since there is a limit on the number of open
descriptors at any given time. An alternate approach is for one or few of the processes to collect messages
from other processes and pass these on to the DS. This approach suffers the additional overhead incurred
by the intermediary or intermediaries, if such message collection is not an inherent part of the executing
parallel application. For each process in a given simulation that connects to the DS, the latter creates a
virtual channel on which messages from the sending process are queued. It is assumed that messages
along each channel are received in order of simulation time.

2.1.1 Synchronization

During a parallel simulation, distinct processors may be involved in computations associated with different
virtual simulation times. Messages sent to the DS by different processors arrive at the DS with distinct
virtual-time stamps. To provide the user with a consistent view of the simulated system, the DS buffers,
sequences and processes messages only when it is certain that subsequent messages cannot induce causality
violations. One way of achieving this is by adopting a conservative parallel simulation protocol in DISplay.
Consider an example utilizing the conservative protocol. Each channel (source—destination link between
processes, as viewed from the destination end) is associated with a channel time. This time is equal to

. 27.5
250 | NULLY
Process
0
25.0
30.0 |32.0 |NULL
30.0 Process

1

Figure 2: Synchronizing DISplay with the application

the time-stamp of the first message queued on the channel buffer, if one exists, or the time-stamp of the
last message retrieved from the channel buffer if the channel buffer is empty. At any given time, the first
message from the buffer of the channel with the smallest channel time is selected for processing. The
following description uses an example to simplify exposition.

In Figure 2 is shown a set of three processes, numbered 0,1, and 2, that connect to the same DS.
The DS creates a virtual channel for each, using processor identifiers to distinguish between channels.
Channel 0 has the smallest channel time, and so the message with time-stamp 25 in channel O is selected for
processing. After this message is processed by the DS, further DISplay processing is temporarily halted
because channel 0 becomes empty (with channel time still at 25), and a minimum time-stamp message
cannot be identified. Now if, for example, another message arrives on channel O with a time-stamp of
27.5, channel time for channel O is updated to 27.5, and channel 2 wins as the channel with the smallest
channel time. The message with time-stamp 27 on channel 2 is selected for processing, leaving channel
2 with a channel time of 28.5. As long as messages continue to arrive from processes, channel times can

be updated, and a minimum time-stamp message selected for processing.

If a process has no messages to send, it avoids an indefinite delay of message selection at the DS
by forwarding a Time Update message, which is basically the equivalent of a null message in the
conservative approach. In effect, the processor sending the message informs the DS that no message
will arrive before a time specified in the Time Update message. Observe that the DS may also be
used in an optimistic parallel simulation, in which case messages will not be sent to the DS until they are
committed and cannot be rolled back. This occurs when the time-stamp of a message is smaller than a
parallel simulation’s global virtual time. In this case however, Time Update messages are not required
but synchronization is necessary so that a consistent view of the simulation is provided to the user. An

example of the use of interactive graphics in the optimistic simulation system SPEEDES is given in [20].
For applications that have no notion of time, it is feasible to send all messages with the same time-stamp
of 0. However, requests must not be sent in wrong time order. If this occurs, there’s a good chance that
the application’s execution logic is incorrect.

N

2.1.2 Resource Sharing

DISplay provides parallel applications with two basic resources, called tasks and dialogs. Tasks are used
for displaying simulation output graphically, while dialogs enable user interaction. In a parallel execution
environment, it is necessary for several processes to share a single resource at the server. DISplay permits
task sharing between processes. For example, all computing processes may employ the same task, to
perform displays in a single window. This is useful in domain-decomposition applications where processes
work on different parts of a domain. Each process displays its contribution to an entire graphical result via
a mapping to a relevant portion of the output screen. Such an approach can be useful when comparisons
between processor results are required — distinct processes display results in the same window, and a
simple visual scan of the display allows for easy comparison.

2.2 Design Goals

- The DISplay software system (servers and client library) is part of a larger development effort geared
towards parallel computations and simulations. This effort is manifest in the ACES software architecture,
a brief overview of which can be found in [7]. A first motivation was the need for a general mechanism to
display data and perform user interaction in a software layer that made display and interaction functions
independent of kernel and communication layers of the ACES system. A second motivation for the
DISplay tool was the need to perform graphical debugging and performance monitoring of the system’s
nontrivial function-interactions, both within and between layers. Facilities for debugging and monitoring
are currently absent in DISplay, but we expect to include this functionality as the project matures.

While additional goals may be added as the system evolves, the basic goals of DISplay at present are:
Simplicity: provide the user with a simple means to collect and view results from parallel simulations.
This should relieve the user of the responsibility of making and maintaining connections and creating
displays. Extensibility: provide an open library in that new functionality can be added with relative
ease. Interaction: provide complete interaction, so that the application can send data to the user, and
the user can send data to the application. This reciprocal action allows the application to take in input,
give the user simulation output and also allows the user to change simulation variables dynamically,
during a run. Performance Monitoring: provide a means to visually depict the status of a simulation
at each process in a parallel simulation, so as to be able to identify critical sections or bottlenecks in the
simulation. Generality: provide as general an interface as possible, so that the system can be used with
general parallel applications. Portability: provide software that is minimally dependent on particulars of
machines, that is inter-operable so that ports to a variety of platforms is possible.

3 The Display Server

The power of display server (DS) lies in its generality — because it does not store application-specific
state. It is application-independent. The DS accepts information from an application for the purpose of
display, and it is up to the user to make decisions on types of displays and types of interactions desired
with an application. The DS presents information to the user in a well-defined manner, accepts input
which it forwards to the application — if the application requires this input, and displays results — if the
application requests such a display. All interpretations of presentation are left to the user. Functions that
the DS provides execute independently of the application. For example, clicking on a button to display
a graph will not affect the executing application. This function is handled at the DS itself. Since the
DS is X-windows based, it provides the familiar windows, icons, menus, and pointing devices interface.
It provides a point and click interface, for function invocation. These invocations may occur randomly,
e.g. windows may be resized, uncovered, or iconified/deiconified, buttons that invoke user interactions or

display windows may be clicked on.

The DISplay system provides tasks and dialogs as basic mechanisms for implementing graphical
displays and user interactions, respectively. Tasks are of two types: Single message tasks require
a single message to be delivered, and their action is taken based on that message alone. Multiple
message tasks require a setup phase, where the task is created locally and then executed at the server.
The creation mechanism returns a task identifier which is used as a handle in all subsequent messages
related to the task. After task creation, multiple task related messages may be sent to the DS to carry
out the intended function. These messages are interpreted in the context of the task identifier. Tasks are
deleted by using an EndTask message. The use of a task identifier provides for some useful performance
improvements. For example, it is not necessary to send information repeatedly saying that a plot is 2D
or 3D, with every message that is associated with this plot. This information is stored at the DS at task
creation time, and a request for plotting a point is executed based on whether the plot is setup for 2D or
3D.

User interactions are also handled in a similar manner. Each possible user-model interaction is assigned
a unique dialog identifier, with a form based dialog created. A dialog setup phase creates the dialog locally
and then sets it up at the DS. Queries and answers using these dialogs are interpreted based on the dialog
identifier and the position of the data within a dialog. It is possible to link dialogs to specific tasks, and to
have tasks linked to specific dialogs. For example, the node or arc of a graph task can be associated with
dialogs. Also, when a dialog is activated it may simply display an active task like a plot of points.

The DS repeatedly reads messages (including requests for new connections from clients) on incoming
channels and acts on them. Messages that are used for setup and termination are identified as control
messages, and others are referred to as act ion messages. Each message has a header which contains the
type of message, virtual time, task identifier, a process identifier for the sending process, the simulation
identifier (which depends on name of the simulation, and is assigned by the CS), and an operation code.
If the message is of a control type, action is taken immediately provided the operation code in the

Task ShellTask X j Task PlotPoints
Histogram
DisplayLevel
PexTask Plot3DPoints
SurfaceMesh*
GraphTask
MultiColumnTask*

Figure 3: The C++ Task Hierarchy

message is urgent or specifies the creation of a new process. Otherwise, the message is queued and is acted
on in correct time order. Queued messages are processed by a queued message handler which invokes
the appropriate handling routine, based on message type and other relevant information contained in the
message, e.g., task identifier, dialog identifier. Commands to display output or query the user are then
executed. Details on these aspects of the system can be found in [8].

3.1 DISplay Classes

A central class, called the controller class, keeps track of all connected processes and their associated
channels. It has a predefined maximum number of channels which are setup as each process connects
to the DS. Each channel class records the socket over which its communication takes place, channel
virtual-time, and a list of tasks and dialogs indexed by identifiers. Messages received on the channel are
queued in FIFO mode. Other important classes in the system include the task and dialog classes.

3.1.1 Tasks

DISplay Tasks are used for any output requiring multiple messages. Tasks form an extensible set of
textual, graphical and representational schemes for displaying the dynamics of a simulation and its end
results. The C++ class hierarchy shown in Figure 3 describes the arrangement of tasks. The Task class
provides control functions for maintaining the status of a task. A task may need to be displayed even
after the simulation is complete. Thus, the display does not disappear when the simulation terminates,
and may correspond to the final simulation result. When an EndTask control message is received from
a client, the task is marked for deletion. It is deleted only when the user selects the Cancel button from
the task window on the screen. When new task classes are added, these may utilize the functionality

Interaction Dialog Invocation
Model Prompted User Prompted
(Synchronous) (Asynchronous)

Two Way | Model Query Dialogs | User Query Dialogs
One Way | Model Display Dialogs | User Command Dialogs

Table 1: Classification of DISplay Dialogs

provided by the base task classes, such as the Task class. This facilitates extension of the interface with
newer displays. The ShellTask class provides for the popping up and down of the window in which
the display is drawn. XYTask is used for all 2D tasks that are drawn to scale. PexTask contains basic
data structures for use with tasks that use the PEXIib 3D library. At the leaves are the actual classes that
a user must be aware of, though it is never necessary to program directly with these.

The classes marked * in figure 3 are to be added in the near future. For example, a provision for the
display of multicolumn tables is planned. This may easily be sub-classed from the ShellTask class.
Adding a new task means that the DISplay protocol must be expanded to include the new task message.
Hooks must be provided in existing DS functions so that control may be passed to functions which will
act upon these messages. A new set of functions pertaining to the new functionality must also be added
to the client library so that the simulation analyst can make use of the new task.

3.1.2 Dialogs

DISplay dialogs are basic mechanisms for user interaction. A dialog is defined as a form consisting
of a set of values. Associated with each value is a set of items which describe that value. In the current
implementation, this set of items is limited to a textual description of the item and a specification describing
the type of the value. The textual description can also be used as a query to the user to input a value of the
required type. Other qualifiers may be added to the existing set. For example, in order to do validation
of user input, a valid range for the values may be provided. Several related dialogs may be made part of
a single panel from which the user can point and click on the label of the particular dialog that is being
invoked. On being invoked, the current state of the dialog is displayed. Dialogs allow for bi-directional
interaction between the application and the user.

Dialogs are of four types (see Table 1), depending on the direction in which interaction is allowed or
restricted, and whether the dialog is invoked by the model or the user.

1. User Query Dialog. The request for value information is sent from the DS to the application. The
application handles the query and returns the required values. Invocation is done by the user, who
may fill in some of the values in the dialog. The application may use these in computation, returning

computed values.

2. User Command Dialog. The user sends information to the application asynchronously. The
application must be willing to handle these dialog messages through appropriate user written
handlers which are registered with the dialog on creation.

3. Model Query Dialog. This functionality is similar to remote calls. The application pops up the
dialog at the DS at predefined points in its execution, and waits for the user to reply. The application
remains blocked until the user reply is received.

4. Model Display Dialog. Information is passed to the DS at predefined points in the application
execution. The DS collects the information and displays it only when the user invokes the dialog
(by clicking on the associated button). The information is received only when the application
chooses to send. A special form of this dialog is one associated with a task. The associated task is
popped up when the panel button is clicked.

It is the developer’s responsibility to provide for functions called dialog handlers in the application.
These must handle replies or queries from the user and are registered when the dialog is created. They
are called automatically when a dialog message of the given type is received. If asynchronous dialogs
are used, the developer must arrange to call a library-provided function from time to time, to read dialog
messages from the DS and call application dialog handlers. An example given in Section 5 shows how
this may be done. Since all messages are logged, it is possible to do a post-run determination of times of
interaction between user and application. This may be important in performance-tuning and analysis of
simulations.

4 Programming and User Interfaces

4.1 The Programming Interface

There are two simple approaches to using DISplay with an application. One approach is to first construct
the simulation application, without regard to DISplay interaction. Calls to the DS can be added when
the working simulation is available. With this approach, the user cannot avail of development support
and debugging help (i.e., display of run-time status, values of simulation variables and simulation object
states) provided by DISplay. On the other hand, if parallel debuggers are available, they may compensate
for or even offer services superior to DISplay’s debugging services. Good parallel debuggers, however,
are still years away. Given a working simulation, client calls may be added wherever necessary in the
application code.

An alternate approach, which we recommend, is to create the simulation application with provision for
client calls in the application design. In testing simulation logic, the DS may be disabled — either by not
initiating a connection to the CS or by setting the value of the handle returned by the sGetServer ()
call to SDERROR. This constant is defined in an include file sdconsts.h, which must be included along
with header file sdelnt.h in all programs that make calls to the DS. With the handle thus set, send-data

calls to the server return immediately, with no effect on the simulation. The first example described in the
following section was developed using the first approach simply because working simulation code was
already available. The second example described was developed using the second approach; the DS was

disabled until the application was tested.

To utilize DS functions the application developer must invoke functions in the DISplay Client Library
(DCL) 1ibds . a, which must be linked with the application. The DCL consists of C functions — so it
can be used with any application that can be interfaced with the C language. All DISplay functions return
appropriate error indicators, and functions that fail return SDERROR. For example, the availability of the
DS is determined by examining the value returned by sGetServer (). Subsequent calls to the DCL
may first ascertain the availability of the DS by testing this value. This allows the simulation to execute
even when the DS is unavailable. If interactive use of the simulation is to be replaced by batch use, the
analyst simply needs to set the window parameter in setup calls to FALSE. Of course, this will work only
if synchronous dialogs (which require user replies) are not built into the application, or are replaced by
calls to read from a file depending on the value of a switch. Logging is also allowed in batch-mode, with
messages to the DS logged in DISplay message format, to be replayed at a later time using a DISplay
utility program.

Client functions are of two types: functions which send messages to the DS and functions which
perform local processing prior to sending a message. Functions of the former type begin with an s prefix,
while functions of the latter type begin with an sd prefix. The DCL contains a host of basic functions,
with several convenience functions that invoke basic functions. An application developer may call either
basic or convenience functions. The latter are simpler to use and recommended, whenever possible. At
present, the basic function set consists of the 34 functions listed in Table 2 shown in the Appendix. These
are classified according to functionality. The first two arguments to all message-sending functions consist
of a socket identifier and simulation time. The third argument is usually a task identifier or a dialog
identifier. Figure 7 in the Appendix gives an example showing the typical use of functions to connect to
the DS. In setting up the connection, it is possible to specify whether logging is required, and whether a
new main window is required. By specifying the number of processes in the simulation, all processes are
guaranteed connection before the DS begins to act on messages from the simulation.

Once the connection is made, tasks may be created, initiated and terminated at any time. In Figure 8 (in
the Appendix) is shown the use of functions for creating a Histogram task (histtask) and two dialogs.
The first dialog (dialog_task) is associated with the newly created task histtask. The second
dialog (dialog_sync) is a synchronous dialog which is invoked using the sQueryReply () call.
The global argument to function sdCreateTask () ensures that different processes will cooperate
to draw in the same window. For example, in a particle dynamics application the domain is set up as a 2D
grid, divided into equal-sized slices among processes. Though processors compute on distinct domains,
it is possible to display the particle movement on the entire grid in a single window. All processes
write into a globally known window, each writing onto only that portion of the window for which it is
responsible, which may indeed be the entire window. This is preferable to the situation where processes

create and display particle movement in distinct windows — this does not aid result interpretation and
analysis, especially when the number of windows is large.

The functions which do the brunt of the drawing work in task windows are listedasMulti Message
Task Functions and Graph Message Functions in Table 2. These functions take in a task
identifier as a parameter, to identify the task to which they must refer on the DS side. Important
functions for drawing in a window include sColPoint (), sP1tPoint (), sHistPoint (), and
sDisplayLevel () — capable of 2D and 3D drawings. Function sColPoint () colors a point in the
window with a specified color. The programmer programs with world coordinates and color names. The
DS converts world coordinates into corresponding window coordinates, and maps colors to pixel values
that can be displayed on the specified X workstation. Function sP1tPoint () plots a line between two
points. The corresponding convenience function for performing 2D plotsis sP1tPoint2D(). Function
sHistPoint () placesa histogram line on the task window, and function sDisplayLevel () displays
the specified level of a meter or variable. With the aid of such functions, diverse abstract displays like
scatter plots, line plots, histograms, x-y-z plots, and level indicators may be shown. Some of these
displays are instantaneous displays (the display shows the status of the simulation at specific points of
time), whereas other displays are cumulative, in that users are presented with a history of information (for
example, a x-y plot task may display a continuous change of the value of a simulation variable plotted
against time).

DISplay allows representational displays to be created using networks. Networks can be used to
represent displays for a variety of physical systems. In queueing systems graph nodes may represent
servers, with arcs representing possible customer routing between servers. In most cases some form of
visual representation of the physical object is used for a graph node. The default is to use a rectangular box
with a label. It is possible to associate dialogs with nodes and arcs. Clicking on a node or arc with which
a dialog is associated, will cause the associated dialog to execute at the DS. For example, in an EcliPSe
simulation, processors arrange themselves in a virtual tree-topology [9] to perform parallel sampling. This
underlying tree configuration of the machines can be displayed by DISplay’s Graph Task(see Figure 4).
With each node is associated a dialog that displays performance data for that node, causing it to pop up
when that particular node is clicked. Moreover, the graph can be modified dynamically. Nodes and arcs
may be added or deleted. The colors of the nodes and arcs may be changed to signify a change in the
value associated with the node (e.g., CPU load level) or arc (e.g., amount of traffic).

4.2 The User Interface

The DS provides the analyst with a user interface that can be tailored to suit the application. This graphical
interface is common to all DISplay applications. For example, a sample screen dump of an EcliPSe [9, 7]
Performance Monitoring display is shown in Figure 4. This is a particular use of DISplay for EcliPSe
applications. In the figure is shown an example of a network (GRAPHTASK), a histogram task and several
asynchronous dialogs. The interface consists of the Interaction Push-buttons which, when clicked, cause

@ -1 $13 PO T1-CPU Load

INTERACTION ,
PUSHBUTTONS—| Fisgi=iey oo
fa = HISTOGRAM
TASK
4—_—
MAIN
INTERFACE
WINDOW [EE! £
GRAPHTASK - uviens
N SN se==) ooz | DIALCG
- - T Hode W, S(NFEQLEST)| ’
AN A = = Bl N
| W O E N R e wtoywmationes] | dod W F00REREST|
[4pe_Salect Lon(RSTNC) Node Num. SUNREQLEST) Collaton rate P,000000

i PSR Y| = QPO [PN | s |
» A

__“_ PANELS

Figure 4: The DisplA User Interface

Panels to pop up. Each panel encapsulates a group of associated dialogs or displays which may be
invoked through use of the panel buttons. Button labels clearly indicate button functions. Each interaction
push-button displayed on the main menu bar of the user interface is application specific. To modify a
user-presentation (for example, to add another panel option) it is necessary to incorporate the option in the
program code and recompile the user’s application. Thus creating application specific interfaces does not
require the client library or the server software to be modified. Task windows open up whenever a Task
is initiated in the application. The X window system allows the user to arrange multiple windows on the
screen, as required. The DS also handles redraw and resize commands independently of the application.
Scale sizes and limits may also be changed interactively and the complete window is redrawn with the
new sizes and limits. Windows can be iconified and deiconified as necessary, and dialogs can be invoked

to display data and closed when not required.

5 Example of DISplay Use

The DISplay system software is useful in a variety of situations including product demonstration, gaming,
learning, modeling, performance monitoring, parallel debugging, etc. The use of the DS for monitoring of
parallel applications in EcliPSe is described in [7]. Here we focus on a simple example demonstrating the
use of DISplay in general simulations. The example is that of an M/M/n queueing system. This example
shows how user interaction facilities and basic displays are used. Results are displayed using line plots
and histograms. It is instructive to note that the user can dynamically alter simulation variables such as

\

customer arrival rate and/or number of servers, to examine system behavior under such changes.

5.1 M/M/n Queueing System Simulation

An M/M/n queue is an n-server queue with Markovian arrivals and services. Customers queue in FIFO
mode in a single queue, awaiting service. In this example we fix the mean service time x and examine the
effect of arrival rate A and number of servers n on the measured responses of mean queue size, actual queue
size and server utilization. The M/M/n application was developed using the process-oriented simulation
language CSIM [16]. The multi-server facility is implemented using the facility type in CSIM. This
simulation tool also provides functions for computing queue size, mean queue size and utilization, all of
which were used to collect data that was subsequently sent to the DS.

In this example application, a user interface was rapidly generated using three dialogs. One was a
synchronous, model-prompted dialog, where the application blocks and queries the user to enter input
parameters (i.e., A, 4, n and total number of customers to be simulated). Once these parameters are
initialized, the application continues to execute. The other two dialogs are asynchronous, user-command
dialogs. These allow the user to dynamically alter A and n. New values for these parameters are sent to
the application, which echoes back both new and old values to the user interface. Appropriate handlers
must be provided in the application to act on these parameter changes.

To display the state of the system three displays are used. The first display depicts the utilization level
of the multi-server facility. The second display shows both the mean queue size and the actual queue size
on a single graph. The third display shows a queue size histogram, made by updating samples on each
customer departure from the facility.

The different dialogs just described are shown in Figure 5, with the synchronous dialog displayed
in Figure 5(a). The code segment shown in Figure 9 (in the Appendix) shows how this dialog is set up
and used. Each entry in the dialog form has a corresponding entry in the SAQtnAns structure. The
dialog is set up locally using sdCreateDialog (), with SAQtnAns passed to the latter as a parameter.
Dialog initiation at the DS is accomplished with sBeginDialog (), and invocation via the function
sQueryReply ().

Asynchronous dialogs are set up locally and initiated at the DS in the same manner. But in contrast
to synchronous dialogs, these are initiated when the user clicks on specific buttons that appear in the user
interface window. Appropriate handlers and calls to read messages from the DS must be provided. In
the application, the developer must call the DCL function sHandleReply () periodically, to look for
queries or commands from the user, with appropriate handlers invoked in response. An example of a
handler (handle_arrival_change ()) whose function is to change mean inter-arrival time on user
input is shown in Figure 9. This example shows how application-specific dialogs are constructed and
used; dialogs can also be changed with ease, if such a change is required. Dialog handling code is easily
separated from the main part of the application through use of handlers that are automatically called when
a dialog is invoked by the user.

Number Of Servers

Change Number of Servers to: H

M/M/n Parameters 0ld Number of Servers was: |
Mean Inter-firrival Time 2 I
Mean Service Time 4 - (b) T
Number of Servers & Mean Arrival

Number of Customers | 8000 Change Inter—rrival to: |

This is a query from an application - you must reply! Y

0ld Arrival Rate wasy |
(a)

()

Figure 5: Dialogs for the M/M/n Server System

Figure 6 contains a user interface window for the queueing application, and also windows which
display simulation results dynamically during model execution. In Figure 6(a) is shown the main user inter-
face window, with two interface push-buttons corresponding to Results and Change Parameters.
By clicking on these buttons, the user obtains panes with dialog-activating push-buttons. These panes are
shown in the Output portion of the window in Figure 6. Results are displayed in abstract form, often
with plots and histograms. For example, in the queueing application, model parameters are initially set as
depicted in the dialog given in Figure 5(a). In Figure 6(b)can be seen a simple plot of facility utilization
versus time. In Figure 6(c) is shown a realization of queue size as well as mean queue size, with both
graphed against time. Figure 6(d) shows a dynamically computed histogram of the queue size.

The graphs show that utilization can be increased, during a simulation run, by interactively changing
the arrival rate A; this also results in a larger mean queue size. Facility utilization is seen to fall to zero at
certain times. These times coincide with the times at which the number of servers in the CSIM facility
was changed. For example the points labelled A in Figure 6(c) correspond to points where A was changed,
and the points labelled N correspond to points at which the number of servers was changed. Subscripts on
each symbol give the new value, after the change.

6 Conclusion

The DISplay software is an application-independent tool for performing Visual Interactive Simulations.
It may be used in parallel simulations or computations. It provides the model developer with tools for
parametric description of a large set of graphical outputs and capabilities for data visualization, inspection

(a) Main Interface Window

1
FILE Help
]
Interaction
Rasults |Chmge Para-aw:] 8 i
»
Output 7
&Y
6
|®](<] Resultsi|]g|(:] Change Parat'i} s
Ut1lization(TRSK) | H/H/n Parameters{SYNC) I
4
Quetie S1ze(TASK) I Number O Sewm(mm)l
Queue Historan(TSK) | | eon prrival ooREQUEST) | 3
Close Close Holp
o | 2
1
gl e R
T = | o r v g
[10000 20000 30000 40000 50000 60000 70000 80000 90000
Close | Clear | Info J telp

135§

105 J

(b) facility Utilization

10000 20000 30000 40000 50000 £0000 70000 80000 90000 -0.5 155 316 475

Close

Clear

Info | Help |

(c)Queue Size and Mean Queue Size(MQS)

Figure 6: User Interface Window and Results

T ¥ ¥ - t

(d) Queue Size Histogram

and specification. Abstract as well as representational displays are implemented and these can be dynamic
or static in nature. Provision is also made to capture the instantaneous state or the cumulative state of
an application. User interaction allows for intervention in model execution, with two way interaction
permissible. Model specific handlers can be invoked automatically when a particular type of interaction is
invoked by the user. Specific support for parallel computations is provided by allowing several processes to
cooperate and draw in a common shared window, and to synchronize with the display. DISplay provides
the model developer with a flexible yet powerful tool to create application specific displays and user
interactions without any need to know the underlying complexities of graphics and data communications
in a distributed environment.

The system described can be enhanced in several ways. Use of a specification file for task and dialog
descriptions would be useful in setting up these resources, instead of coding these directly into the program.
Interface modification would thus only entail change in the specification file. The specification file could
be built interactively. Several tasks, including support for three dimensional surface meshes, and display of
multicolumn tables can be added; display of results at more than one workstation — to provide distributed
displays — so that multiple users can collaborate in simulation analysis also would undoubtedly be
useful. These enhancements are currently under way, as part of a larger effort in heterogeneous distributed
simulation. This effort is based on the ACES system [7].

The basic types of simulation output described here are common to most simulations. This realization
motivated us to develop a generalized and extensible display capability. DISplay is now a full fledged VIS
tool, enabling easy user interaction and dynamic visualization of output in nontrivial applications. We have
used DISplay to visualize parallel simulated annealing, numerical analysis algorithms, particle-physics,

and computer network simulations.

References

[1] N. Collins and C. Watson. Introduction to Arena. In G. Evans, M. Mollaghasemi, E. Russell, and
W. Biles, editors, Winter Simulation Conference, pages 205-212, December 1993.

[2] D. Comer and D. L. Stevens. Internetworking with TCP/IP, volume III:Client—Server Programming
and Applications. Englewood Cliffs, N.J. : Prentice Hall, 1993.

[3] R. Fujimoto. Parallel Discrete Event Simulation. CACM, 33(10):30-53, 1990.

[4] T. Gaskins. PEXIib Programming Manual. The Definitive Guides to the X Window System. O’Reilly
& Associates, Inc., 1992.

[5] M. Glavach and D. Sturrock. Introduction to SIMAN/Cinema. In G. Evans, M. Mollaghasemi,
E. Russell, and W. Biles, editors, Winter Simulation Conference, pages 190-192, December 1993.

[6] D. Heller. Motif Programming Manual. For OSF/Motif Version 1.1, volume Six of The Definitive
Guides to the X Window System. O’Reilley & Associates, Inc., motif edition, 1991.

[7] F. Knop, E. Mascarenhas, V. Rego, and V. Sunderam. Fail-Safe Concurrent Simulation with EcliPSe:
An introduction. Simulation Practice & Theory (to appear), 1995.

[8] E. Mascarenhas and V. Rego. DISplay: A technical reference manual. Technical report, Purdue
University, Department of Computer Sciences, 1994. In preparation.

[9] H. Nakanishi, V. Rego, and V. S. Sunderam. On the effectiveness of superconcurrent computations
on heterogeneous networks. Parallel and Distributed Computing (to appear), 1994.

[10] R. M. O’Keefe. What is Visual Interactive Simualtion? (And is there a methodology for doing it
right?). In Proceedings of the Winter Simulation Conference, pages 461-464, 1987.

[11] J. J. O’Reilly. Introduction to SLAM II and SLAMSYSTEM. In G. Evans, M. Mollaghasemi,
E. Russell, and W. Biles, editors, Winter Simulation Conference, pages 179—183, December 1993.

[12] J. K. Ousterhout. An X11 Toolkit based on the Tcl language. In Winter USENIX Conference, pages
105-115, 1991.

[13] Pritsker and Associates, Inc., West lafayette, IN 47906. TESS and SLAMII.

[14] M. Rooks. A Unified Framework for Visual Interactive Simulation. In Proceedings of the Winter
Simulation Conference, pages 1146-1154, 1991.

[15] E. C. Russell. Building simulation models with SIMSCRIPT I1.5. CACI Products Company, La
Jolla, CA, 1989,

[16] H. Schwetman. CSIM Users’ Guide. Microelectronics and Computer Technology Corporation, June
1992.

[17] V. Sunderam. PVM: A framework for parallel distributed computing. Concurrency: Practice and
Experience, 2(4), December 1990.

[18] W.Thompson. A tutorial for modelling with the WITNESS visual interactive simulator. In G. Evans,
M. Mollaghasemi, E. Russell, and W. Biles, editors, Winter Simulation Conference, pages 228-232,
December 1993.

[19] B. Topol. Conch: Second generation heterogeneous computing. Master’s thesis, Department of
Math and Computer Science, Emory University, 1992.

[20] Y.-W. Tung and J. Steinman. Interactive graphics for the parallel and distributed computing simula-
tion. Proceedings of the Winter Simulation Conference, pages 695-700, 1992.

A Appendix

main(int argc, char **argv)

{
char *simname; /* the name of the simulation */
char *host; /* the location of the connection server */
char *service; /* the port number of the connection server */
int sock; /* the handle to the DS */
int ret; /* return code from functions */
int window=TRUE, log=TRUE; /* window up and logging on */
int num_of_procs; /* number or processes in the simulation */
sock = sGetServer (simname, host, service); /* make the connection */
if (sock == SDERROR) {
/* handle the error here */
}
/* register this process as one of num of procs */
ret = sNewProcessMsg(sock, window, log, num_of_procs);
/* rest of processing and messages to DS */
ret = sEndServer (sock) ; /* close the connection */
}

Figure 7: Example of connecting to the Display Server

#include "sdconsts.h"
#include "sdclnt.h"
#include "sdutil.h"

{

/* dialog */

static SdQtnAns gtnans_sync{] = {
{'What is your name?", SDSTRING},
{*What is your key?", SDINT},

}:

char *replyl[2];

double timereply=0.0;

int i;

int histtask;
int dialog_task, dialog_sync;
int global = 1; /* is a global task */

/* create and initiate a Histogram task */
histtask = sdCreateTask(HISTTASK, window, log, global);
sdSetTaskValues (histtask,
SdXaxisName, "X- axis",
SdyaxisName, "Y- axis",
sdritle, "Particle simulation",
SdXmin, 0.0,
SdXmax, 20.0
sd¥min, 0.0,
Sd¥max, 20.0
SdNoPoints, 5.0,

SdDim, 2,
SdXaxisInterval, 1,
NULL) ;

sBeginTask(sock, simtime, histtask);

/* create the task dialog */

dialog_task = sdCreateDialogTask("Histogram", histtask);

/* create the Synchronous dialog */

dialog_sync = sdCreateDialogNotask("PassKey", SDMODEL_QUERY,
Number (gtnans_sync), gtnans_sync,
NULL) ;

/* begin the dialogs grouping the two into a single pane*/
sBeginDialog(sock, simtime, dialog_task, dialog_sync, "Some Dialogs");

/* invoke the synchronous dialog */
ret = sQueryReply(sock, &timereply, dialog_sync, reply):;

/* print the replies */
for (i = 0; i < Number(gtnans_sync); i++) {
printf("Qtn:%s Ans:%s\n",qgtnans_syncli].question,
reply[i]);

Figure 8: Use of Task and Dialog Functions

int sock; /* socket for communication */
int iatm; /* the mean inter-arrival time */
static sSdQtnAns dialog_parm[] = { /* parameters of the simulation */

{"Mean Inter-Arrival Time", SDFLOAT},
{"Mean Service Time", SDFLOAT},
{"Number of Servers", SDINT},
{"Number of Customers", SDINT},

}:
static int parm_dialog_id, arr_dialog_id; /* dialog identifiers */
int ds_setup() /* demonstrates setup */
{
parm_dialog_id = sdCreateDialogNotask ("M/M/n Parameters", SDMODEL_QUERY,
Number (dialog_parm), dialog_parm,
NULL) ;
sBeginDialog(sock, clock, parm_dialog_id, arr_dialog_id,
"Change Parameters");
return(sock) ;
}
get_parameters{int sock) /* demonstrates use of Synchronous dialog */
{
char *replyl4]; /* replies placed here */
double dbl, timereply;
int ivl;
timereply = clock;
sQueryReply (sock, &timereply, parm_dialog_id, reply): /* query user */
if ((dbl = atof(replyl[0])) > 0.0)
iatm = dbl; /* Inter-arrival Time */
if ((dbl = atof(reply[l])) > 0.0)
svtm = dbl; /* service time */
if ((ivl = atoi(replyl[2])) > 0)
ns = ivil; /* number of servers */
if ((ivl = atoi(reply(31)) > 0)
nars = ivl; /* number of customers */
sStrPrintMsg (sock, clock, "M/M/n parameters");
sStrPrintMsg(sock, clock, "Service Time %f Inter-Arrival %f Servers %d4d",
svtm, iatm, ns);
}
int handle_arrival_change(char *replyl]) /* handle mean inter-arrival */
{ /* reply contains user input */

float new_iatm;
char **send_reply;

if (((new_iatm = (float)atof (reply[0]1)) == 0) || (new_iatm == iatm))
return(0);

wait (event_list_empty);

sStrPrintMsg(sock, clock,

"Changing inter-arrival time at time %f\n", clock);
send_reply = sdCreateReply(arr_dialog_id); /* create a reply */
sdAddToReply (arr_dialog_id, 0, new_iatm); /* place reply here */
sdAddToReply (arr_dialog_id, 1, iatm);
iatm = new_iatm;
sReplyDispMsg (sock, clock, arr_dialog_id, send_reply);/* update screen */
return(l);

Figure 9: Handler and Code for Dialogs in a CSIM program

| Function | Remote] Description
Server Control Functions
sGetServer() Yes Obtain a handle to the DS
sNewProcessMsg() | Yes Identify itself as a process and request
window setup and logging, if required.

sEndServer() Yes Close the connection to the DS

Single message Task Functions
sNullMsg() Yes Send an empty message and update channel time
sStrPrintMsg() Yes Format and print the message on remote window

Multi message Task Control Functions

sdCreateTask() No Set up a task and return a handle
sdSetTaskValues() | No Set up specific parameters for the task
sdGetTaskType() No Get the type of task
sBeginTask() Yes Set up the task at the DS
sEndTask() Yes End the task at the DS

Multi message Task Functions
sdCreateSdPoints() | No Create a set of points to be filled in
sdFreeSdPoints() No Free the set of points created by sdCreateSdPoints()
sdAddSdPoint() No Add a point to the set created by sdCreateSdPoints()
sdFreqHistPoint() | No Return the histogram frequency for a given X value
sColPoint() Yes Color a point with a particular color
sP1tPoint() Yes Plot a line from the previous point to this point in a

particular color

sHistPoint() Yes Draw the line bar in the Histogram
sRestartPlot() Yes Begin drawing a line plot from a different point

sDisplayLevel() Yes Display the level in a level-plot

Graph message Functions

sGAddNode() Yes Add a node to the graph

sGAddArc() Yes Add an arc to the graph

sGDeleteNode(): Yes Delete a existing node from the graph

sGDeleteArc() Yes Delete an existing arc from the graph

sGChangeVal() Yes Change some display parameter of a node or arc
Dialog Control Functions

sdCreateDialog() | No Create a dialog

sdDeleteDialog() No Delete a dialog when it is no longer required

sBeginDialog() Yes Set up a created dialog at the DS
sChangeDialog() Yes Change the parameters of the dialog

Dialog Handler Functions

sdCreateReply() No Prepare a reply to send to the DS

sdAddToReply() No Add an answer in the reply created

sdFreeReply() No Free reply created by sdCreateReply()
sQueryReply() Yes Send a query to the User and get reply
sHandleReply() Yes Read user command and handle it in the application

sReplyDispMsg() | Yes Send a reply to a User Query message

Table 2: Basic Functions used with the Display Server

